Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Interface Focus ; 12(2): 20210063, 2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1713822

ABSTRACT

Poor housing conditions are known to be associated with infectious diseases such as high Coronavirus disease 2019 (COVID-19) incidences. Transmission causes of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in poor housing conditions can be complex. An understanding of the exact mechanism of transmission can help to pinpoint contributing environmental issues. Here, we investigated a Hong Kong COVID-19 outbreak in early 2021 in four traditional Tong Lau houses with subdivided units. There are more than 80 subdivided units of less than 20 m2 floor area each on average. With a total of 34 confirmed COVID-19 cases, the outbreak had an attack rate of 25.4%, being one of the highest attack rates observed in Hong Kong, and ranked among the highest attack rates in reported outbreaks internationally. Tracer gas leakage and decay measurements were performed in the drainage system and in the subdivided units to determine the transport of infectious aerosols by the owner-modified sophisticated wastewater drainage pipe networks and the poor ventilation conditions in some subdivided units. The results show that the outbreak was probably due to multiple transmission routes, i.e. by the drainage pipe spread of stack aerosols, which is enhanced by poor ventilation in the subdivided units.

2.
Clin Infect Dis ; 73(5): e1142-e1150, 2021 09 07.
Article in English | MEDLINE | ID: covidwho-1398080

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) continues to threaten human life worldwide. We explored how human behaviors have been influenced by the COVID-19 pandemic in Hong Kong, and how the transmission of other respiratory diseases (eg, influenza) has been influenced by human behavior. METHODS: We focused on the spread of COVID-19 and influenza infections based on the reported COVID-19 cases and influenza surveillance data and investigated the changes in human behavior due to COVID-19 based on mass transit railway data and the data from a telephone survey. We did the simulation based on a susceptible-exposed-infected-recovered (SEIR) model to assess the risk reduction of influenza transmission caused by the changes in human behavior. RESULTS: During the COVID-19 pandemic, the number of passengers fell by 52.0% compared with the same period in 2019. Residents spent 32.2% more time at home. Each person, on average, came into close contact with 17.6 and 7.1 people per day during the normal and pandemic periods, respectively. Students, workers, and older people reduced their daily number of close contacts by 83.0%, 48.1%, and 40.3%, respectively. The close contact rates in residences, workplaces, places of study, restaurants, shopping centers, markets, and public transport decreased by 8.3%, 30.8%, 66.0%, 38.5%, 48.6%, 41.0%, and 36.1%, respectively. Based on the simulation, these changes in human behavior reduced the effective reproduction number of influenza by 63.1%. CONCLUSIONS: Human behaviors were significantly influenced by the COVID-19 pandemic in Hong Kong. Close contact control contributed more than 47% to the reduction in infection risk of COVID-19.


Subject(s)
COVID-19 , Influenza, Human , Aged , Hong Kong/epidemiology , Humans , Influenza, Human/epidemiology , Pandemics , SARS-CoV-2
3.
J Hazard Mater ; 421: 126799, 2022 01 05.
Article in English | MEDLINE | ID: covidwho-1336648

ABSTRACT

Stack aerosols are generated within vertical building drainage stacks during the discharge of wastewater containing feces and exhaled mucus from toilets and washbasins. Fifteen stack aerosol-related outbreaks of coronavirus disease 2019 (COVID-19) in high-rise buildings have been observed in Hong Kong and Guangzhou. Currently, we investigated two such outbreaks of COVID-19 in Hong Kong, identified the probable role of chimney effect-induced airflow in a building drainage system in the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We injected tracer gas (SF6) into the drainage stacks via the water closet of the index case and monitored tracer gas concentrations in the bathrooms and along the facades of infected and non-infected flats and in roof vents. The air temperature, humidity, and pressure in vertical stacks were also monitored. The measured tracer gas distribution agreed with the observed distribution of the infected cases. Phylogenetic analysis of the SARS-CoV-2 genome sequences demonstrated clonal spread from a point source in cases along the same vertical column. The stack air pressure and temperature distributions suggested that stack aerosols can spread to indoors through pipe leaks which provide direct evidence for the long-range aerosol transmission of SARS-CoV-2 through drainage pipes via the chimney effect.


Subject(s)
Aerosols , Air Microbiology , COVID-19 , Housing , COVID-19/transmission , Hong Kong , Humans , Phylogeny , SARS-CoV-2
4.
Environ Int ; 156: 106723, 2021 11.
Article in English | MEDLINE | ID: covidwho-1275301

ABSTRACT

By the end of February 2021, COVID-19 had spread to over 230 countries, with more than 100 million confirmed cases and 2.5 million deaths. To control infection spread with the least disruption to economic and societal activities, it is crucial to implement the various interventions effectively. In this study, we developed an agent-based SEIR model, using real demographic and geographic data from Hong Kong, to analyse the efficiency of various intervention strategies in preventing infection by the SARS-CoV-2 virus. Close contact route including short-range airborne is considered as the main transmission routes for COVID-19 spread. Contact tracing is not that useful if all other interventions have been fully deployed. The number of infected individuals could be halved if people reduced their close contact rate by 25%. For reducing transmission, students should be prioritized for vaccination rather than retired older people and preschool aged children. Home isolation, and taking the nucleic acid test (NAT) as soon as possible after symptom onset, are much more effective interventions than wearing masks in public places. Temperature screening in public places only disrupted the infection spread by a small amount when other interventions have been fully implemented. Our results may be useful for other highly populated cities, when choosing their intervention strategies to prevent outbreaks of COVID-19 and similar diseases.


Subject(s)
COVID-19 , Aged , Child , Child, Preschool , Contact Tracing , Disease Outbreaks , Hong Kong/epidemiology , Humans , SARS-CoV-2
5.
Cities ; 112: 103139, 2021 May.
Article in English | MEDLINE | ID: covidwho-1077828

ABSTRACT

COVID-19 threatens the world. Social distancing is a significant factor in determining the spread of this disease, and social distancing is strongly affected by the local travel behaviour of people in large cities. In this study, we analysed the changes in the local travel behaviour of various population groups in Hong Kong, between 1 January and 31 March 2020, by using second-by-second smartcard data obtained from the Mass Transit Railway Corporation (MTRC) system. Due to the pandemic, local travel volume decreased by 43%, 49% and 59% during weekdays, Saturdays and Sundays, respectively. The local travel volumes of adults, children, students and senior citizens decreased by 42%, 86%, 73% and 48%, respectively. The local travel behaviour changes for adults and seniors between non-pandemic and pandemic times were greater than those between weekdays and weekends. The opposite was true for children and students. During the pandemic, the daily commute flow decreased by 42%. Local trips to shopping areas, amusement areas and borders decreased by 42%, 81% and 99%, respectively. The effective reproduction number (R t ) of COVID-19 had the strongest association with daily population use of the MTR 7-8 days earlier.

6.
Build Environ ; 180: 107106, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-625254

ABSTRACT

By March 31, 2020, COVID-19 had spread to more than 200 countries. Over 750,000 confirmed cases were reported, leading to more than 36,000 deaths. In this study, we analysed the efficiency of various intervention strategies to prevent infection by the virus, SARS-CoV-2, using an agent-based SEIIR model, in the fully urbanised city of Shenzhen, Guangdong Province, China. Shortening the duration from symptom onset to hospital admission, quarantining recent arrivals from Hubei Province, and letting symptomatic individuals stay at home were found to be the three most important interventions to reduce the risk of infection in Shenzhen. The ideal time window for a mandatory quarantine of arrivals from Hubei Province was between 10 January and January 17, 2020, while the ideal time window for local intervention strategies was between 15 and 22 January. The risk of infection could have been reduced by 50% if all symptomatic individuals had immediately gone to hospital for isolation, and by 35% if a 14-day quarantine for arrivals from Hubei Province had been introduced one week earlier. Intervention strategies implemented in Shenzhen were effective, and the spread of infection would be controlled even if the initial basic reproduction number had doubled. Our results may be useful for other cities when choosing their intervention strategies to prevent outbreaks of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL